

York Health Economics Consortium

Environmental sustainability in health technology assessment (HTA)

Mat Taylor, Director Melissa Pegg, Senior Research Consultant

matthew.taylor@york.ac.uk melissa.pegg@york.ac.uk

www.yhec.co.uk

Key messages for today

- Environmental impacts affects human health, contributing to disease burden
- Healthcare contributes sizeable environmental impact
- Approaches to sustainable development in health technology assessment and economic evaluation
- Challenges faced include data limitations, internal resource constraints and how do we "trade off" and balance appropriate decision making in terms of including environmental outcomes
- Life cycle assessment (LCA) is an important framework and the broader impacts of health technology need to be included in the LCA model

York Health Economics Consortium

Brief overview of environmental sustainability at York Health Economics Consortium (YHEC)

YHEC's in-house environmental sustainability team provides support across all workstreams

Environmental sustainability services

Bespoke Support with sustainability Quantitative HTA in healthcare research submissions education Life Cycle Environmental Broad range of **Assessment** sustainability environmental (LCA) strategy outcomes support **Sustainability** Manuscript **Model reviews** and decision preparation making

Carbon dioxide equivalents (CO2e) – a common single unit of expression

Carbon dioxide equivalent (CO2e)

Greenhouse Gas	Global Warming Potential (GWP)
Carbon dioxide (CO ₂)	1
Methane (CH ₄)	25
Nitrous oxide (N ₂ 0)	298
Hydrofluorcarbons (HFCs)	124 - 14,800
Perfluorocarbons (PFCs)	7,390 - 12,200
Sulfur hexafluoride (SF ₆)	22,800
Nitrogen trifluoride (NF ₃)	17,200

Source: International Panel on Climate Change 2007 report (Solomon et al., 2007)

Source: The Earthbound Report 2012

How does environmental health affect human health?

- During summer 2022, an estimated 2,985 (2,258 to 3,712) and 62K all-cause excess heat related deaths in the UK and Europe, respectively (Ballester et al., 2023)
- Air pollution is linked to over 9 million (12%) deaths globally a year (Fuller et al., 2022)
- Within the past 50 years wildlife numbers have plunged by 69% (WWF Living Planet Report 2022) including a 45% decline in insect abundance
- The UK Environment Agency warns that by 2040, the number of seriously water stressed regions is on course to rise to 12, out of a total of 17 (<u>Kingfisher 2023</u>)
- A Canadian study reports the healthcare system generates 33 million tonnes of CO2e per/yr as well as >200,000 tonnes of other pollutants linked to 23,000 DALYs lost per/yr from healthcare pollution (Eckelman et al., 2018)

York Health Economics Consortium

Healthcare's environmental footprint and environmental targets

Healthcares' environmental footprint

Source: carbon emissions by proportion of NHS Carbon Footprint Plus (2022)

- NHS supply chain contributes largest footprint (almost two-thirds) of which pharmaceuticals and chemicals (20% total) and medical equipment (10% total) were biggest contributors
- 20% of carbon emissions in the NHS is attributable to the life cycle of pharmaceuticals (NHS 2022)
- The NHS in England generates approximately 538,600 tonnes of waste per year equating to 20% financial expenditure (NHS 2022)
- England = 24.9 Million tonnes CO2e, 4.4% of national GHG emissions – equivalent to whole of Croatia (NHS 2022)
- Healthcare emissions represent as a country the 5th largest worldwide (Tennison et al., 2021)

National Health Service (NHS) net zero targets

 In 2020 UK NHS first health system to set an ambition of net zero:

- scope 1 + scope 2 by 2040
- scope 3 by 2045
- All trusts and ICSs have Green Plans in place
- In 2022, social value in central government contracts making a weighting of 10% for net zero + social value compulsory
- From April 2024, all NHS procurements must have a Carbon Reduction Plan
- From 2030 suppliers will only be able to qualify for NHS contracts if they can demonstrate their progress through published progress reports

Source: Greenhouse gas protocol scopes in the context of the NHS

York Health Economics Consortium

Healthcare environmental sustainability framework development

Sustainability in healthcare

Sustainability is defined as *"meeting the needs of the present without compromising the ability of future generations to meet their own needs."* (Brundtland 1987)

What about developments in HTA?

- Research into approaches and methods of assessment are starting to emerge from authors based within HTA organisations and stakeholders globally
- Several HTA organisations and agencies globally are starting to prioritise sustainability as part of their review process including The UK (NICE), Health Improvement Scotland (HIS) and Canada's Drug and Health Technology Agency (CADTH)
- In 2018, CADTH undertook a <u>first parallel assessment alongside a CEA</u>: the environmental assessment was approached from a risk viewpoint
- In 2021, <u>the NICE</u> pledged to explore ways to incorporate environmental impact data in their guidance (NICE 2021)
- NICE recently published a report exploring public opinion on their role in making healthcare more environmentally sustainable (NICE 2023)
- I undertook the first parallel assessment alongside a CEA of single use device versus reusable for Health Improvement Scotland (due to be published soon)
- No HTA reference manuals currently state the inclusion of environmental impacts
- Challenges faced; resources constraints, data availability and competing priorities

Canada's Drug and Health technology Agency (CADTH) Environmental Horizon Scan (CADTH 2023)

- Opportunities to reduce health care's environmental impact; appropriate use of health care, reducing unnecessary health care, and rethinking and researching what and how health care is provided
- Healthcare initiatives identified include operating rooms and surgical services, anaesthetics services, dialysis, virtual care, and single-use medical supplies
- Multiple goals can be achieved e.g., appropriate use of metered dose inhalers = cost savings, improving patient care, and reducing the environmental impact of care
- Challenges such as the lack of data on the environmental impact of clinical interventions and devices, although opportunities for engaging health care leadership, staff, and patients to support sustainable development in healthcare
- Opportunities are to consider evidence on environmental impact alongside clinical and economic evidence, patient perspectives, social values, and ethics to support the delivery of clinically effective, cost-effective, and environmentally sustainable care

York Health Economics Consortium

Incorporation into decision making

What do we mean by 'decision making'?

- Limited to assessing the environmental impact of healthcare decisions
 - Approving a new drug
 - Approving a new device
 - Approving a change to the system / pathways
 - Updating a clinical guideline
 - Public health policies
 - etc.
- The impact might be (net) positive or negative

Two main approaches to including sustainability in HTA

PARALLEL ASSESSMENT

DELIBERATIVE PROCESS

- A committee might use environmental evidence alongside other evidence
- Similar to inequalities
- Similar to innovation

CAN LEAD TO INCONSISTENCIES

- No transparency as when the environmental impact should / should not change the decision
- Likely to be a high risk of legal appeals

FULLY INTEGRATED ANALYSIS

EXPLICITLY MODIFIES THE RESULTS

- All outcomes are quantified
- Combined together to form a single result

REQUIRES A DECISION RULE

- How much health loss should be traded in order to gain one 'unit' of environmental benefit (and vice versa)?
- 1 QALY = ?

York Health Economics Consortium

Case study: diabetes

Case study: diabetes

Open accessOriginal researchBMJ Open
Diabetes
Research
& CareEffective diabetes complication
management is a step toward a
carbon-efficient planet: an economic
modeling study

Ric Fordham,¹ Ketan Dhatariya ⁽ⁱ⁾,^{2,3} Rachel Stancliffe,⁴ Adam Lloyd,⁵ Mou Chatterjee,⁶ Mevin Mathew,⁶ Loveleen Taneja,⁶ Mike Gains,⁵ Ulrik Haagen Panton⁷

To cite: Fordham R, Dhatariya K, Stancliffe R, *et al.* Effective diabetes complication management is a step toward a carbon-efficient planet: an economic modeling study. *BMJ Open Diab Res Care* 2020;8:e001017. doi:10.1136/ bmjdrc-2019-001017

 Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ bmjdrc-2019-001017).

Received 31 October 2019 Revised 19 February 2020 Accepted 24 March 2020

ABSTRACT

Background The management of diabetes-related complications accounts for a large share of total carbon dioxide equivalent (CO_2e) emissions. We assessed whether improving diabetes control in people with type 2 diabetes reduces CO_2e emissions, compared with those with unchanging glycemic control.

Methods Using the IQVIA Core Diabetes Model, we estimated the impact of maintaining glycated hemoglobin (HbA,) at 7% (53 mmol/mol) or reducing it by 1% (11 mmol/mol) on total CO_e/patient and CO_e/life-year (LY). Two different cohorts were investigated: those on first-line medical therapy (cohort 1) and those on third-line therapy (cohort 2). CO e was estimated using cost inputs converted to carbon inputs using the UK National Health Service's carbon intensity factor. The model was run over a 50-year time horizon, discounting total costs and quality adjusted life years (QALYs) up to 5% and CO.,e at 0%. Results Maintaining HbA, at 7% (53 mmol/mol) reduced total CO,e/patient by 18% (1546 kgCO,e/patient) vs 13% (937 kgCO_e/patient) in cohorts 1 and 2, respectively, and led to a reduction in CO_e/LY gain of 15%-20%. Reducing HbA, by 1% (11 mmol/mol) caused a 12% (cohort 1) and 00/ (ashert 0) reduction in CO a/patient with a CO a/IV

Significance of this study

What is already known about this subject?

- Diabetes and its complications accounts for a significant proportion of costs in any health service, generating large quantities of carbon dioxide.
- Minimizing health service-associated carbon dioxide emissions is a priority to help prevent further global warming.

What are the new findings?

We have used an established model to show that maintaining or reducing glycated hemoglobin concentrations reduces carbon dioxide equivalent emissions compared with those with unchanging glycemic control.

How might these results change the focus of research or clinical practice?

This model can be used as a template for other longterm conditions to assess the environmental impact of treatments on a national basis.

Measured the impact of different treatments on CO₂

- Used established model (IQVIA Core Diabetes Model)
- Estimated scenarios for different HbA_{1c} reductions (and 1st line / 3rd line)
- Attached CO₂ 'payoffs' for different conditions / complications

Complication	Based on	Alternate assessment
	resources and services	based on costs
Myocardial infarction 1st year	1118.32	1470.74
Myocardial infarction 2nd+ years	112.14	147.49
Angina 1st year	764.64	673.78
Angina 2nd+ years	511.79	450.97
Congestive heart failure 1st year	667.30	620.47
Congestive heart failure 2nd+ years	340.15	316.28
Stroke 1st year	6773.56	1645.49
Stroke 2nd+ years	1119.80	272.03
Peripheral vascular disease 1st year	1161.69	421.53
Peripheral vascular disease 2nd+ years	1161.69	421.53
Haemodialysis 1st year	7618.27	5659.83
Haemodialysis 2nd+ years	7618.27	5659.83
Peritoneal dialysis 1st year	467.80	4720.72
Peritoneal dialysis 2nd+ years	467.80	4720.72

Source:

Sustainable Development Unit. Goods and services carbon hotspots:

Effective treatment reduces CO₂ emissions

Figure 1 Reduction in total carbon emission per patient. CO₂e, carbon dioxide equivalent.

Implications and limitations of the study

- Prevention of renal complications was the largest driver of CO₂ reduction
- Did not include CO₂ impact of pharmacotherapies
- Did not account for opportunity cost (displaced therapies) impact on CO₂
- Only focussed on CO₂ emissions (i.e. not other environmental outcomes)

Measuring the *real* impact on the environment

Opportunity cost impact for the environment

Making interventions more environmentally friendly will have an adverse impact on human health...

*Assuming that the costs fall to the manufacturer or the health system. If the costs fall outside the health system, this doesn't need HTA decisions.

Health vs environment: preferences

- As noted above, there can sometimes be 'trade-offs' between outcomes produced by a new healthcare intervention
- For example, an intervention might improve health, but cause harm to the environment
- An intervention might be less harmful, but cost more (and thus take funding away from other resources that might have improved health)
- Very little (if any) evidence exists as to the public's preferences for such trade offs

Health vs environment: preferences

Discrete choice experiments (example)

Option A		
Life expectancy	12 years	
CO ₂ emissions	High	
Impact on resources	High impact	
Impact	Overseas only	

Option B		
Life expectancy	14 years	
CO ₂ emissions	Medium	
Impact on resources	Medium	
Impact	Global	
Health vs environment: preferences

- A pilot study conducted by YHEC in 2023 concluded that it is feasible to ask the public about such trade-offs
- N = 508
- Willing **to lose** 0.75 years of life expectancy for a 5% **reduction** in CO₂ emissions
- Willing to accept a 5% **increase** in CO₂ emissions for a 1.59-year **increase** in life expectancy
- Willing to lose 1.55 years of life expectancy to save 100 species from becoming extinct
- Willing to accept 100 species **going extinct** for a 2.88-year **increase** in life expectancy
- Results varied depending on the location of the environmental impact (e.g. UK vs overseas)

York Health Economics Consortium

Challenges

What data do we need to make these decisions?

Scenario	Analysis requirement				
Head to head single technology appraisal (STA)	Two impact assessments (one for each treatment)				
STA with multiple comparators	Multiple impact assessments (one for each intervention)				
Multiple technology appraisal (MTA)	Multiple impact assessments (one for each intervention)				
Medical technology evaluation	Assessment for each technology and potential changes in the technology (since medical technologies tend to evolve over time, unlike pharmaceuticals)				
Clinical guideline	One assessment for each decision point in the clinical guideline (with a separate analysis for each alternative at each decision point)				
Public health evaluation	One assessment for each decision point in the clinical guideline (with a separate analysis for each alternative at each decision point)				
Plus the impact of displaced fundir	No guidance how to handle cases where we have strong evidence for one intervention but not others				

Other challenges

- Who is responsible for *producing* the evidence?
 - Risk of bias / non-reporting
- Who is responsible for *critiquing* the evidence
 - Appropriate skills
- What are the boundaries?
 - Geographic borders
 - Time horizons
- Can everything be quantified and valued?
 - GHGs, pollution, resources maybe
 - Biodiversity?

Other challenges

- Triage approach
 - Defining "substar
- Uncertainty and
 - Life cycle approa
- Discounting
 - Intergenerational
 - Treasury recomm
 - However, this car

Two main approaches to including sustainability

PARALLEL ASSESSMENT

DELIBERATIVE PROCESS

- A committee might use environmental evidence alongside other evidence
- Similar to inequalities
- Similar to innovation

CAN LEAD TO INCONSISTENCIES

- No transparency as when the environmental impact should / should not change the decision
- Likely to be a high risk of legal appeals

FULLY INTEGRATED ANALYSIS

EXPLICITLY MODIFIES THE RESULTS

- All outcomes are quantified
- Combined together to form a single result

REQUIRES A DECISION RULE

 How much health loss should be traded in order to gain one 'unit' of environmental benefit (and vice versa)?

• 1 QALY = ?

Example of parallel assessment checklist

Question		Response		
	reatment pathway likely to impact upon GHG ter pollution, biodiversity, resource depletion or air			
 Has the company / gu the impact? 	uideline developer discussed the likely direction of			
 Has the company / gu the impact? 	uideline developer discussed the likely magnitude of			
	uideline developer considered all downstream mendation (i.e. will this increase / decrease other use)?			
 Have estimates been pathways? 	provided for the comparator treatments and/or			
	ental impact for the investigated treatment likely to an that of the comparators?			
 If quantitative estimat appropriate sources? 	es have been provided, were they derived from			
 Has uncertainty arour 	nd the estimates been addressed appropriately?			

York Health Economics Consortium

Environmental life cycle assessment (LCA)

- LCA is a framework for measuring the environmental impact of an intervention
- Existing standards include <u>GHG protocol standards</u>; <u>ISO14001 standards</u>; <u>ISO14067 standards</u>; <u>PAS 2050</u>
- GHG Accounting Sector Guidance for Pharmaceutical Products and Medical Devices

Source: The boundary of a product LCA outlined in the GHG Protocol standards (World Resource Institute 2011)

Overview of steps of product accounting and reporting. World Resources Institute (2011) Greenhouse gas protocol. <u>Product life cycle reporting and accounting standards</u>

- Part of the LCA is a life cycle impact assessment (LCIA). There are various impacts to consider with the LCIA:
 - Human heath impact
 - Greenhouse gas emissions
 - Waste
 - Water pollution
 - Air pollution
 - Depletion of resources, for example, water, fossil fuels, finite rare elements
 - Loss of biodiversity
 - Animal health impact
 - Animal welfare (QALY)

- Two methodological approaches used to perform either a carbon footprint or LCA environmental impact evaluation
- 'Top-down' environmentally extended input-output (EEIO) model applying a monetary cost of a unit to estimate environmental impact
- 'Bottom-up' process-based method involves collecting data on all the component processes underpinning the unit of interest
- Hybrid methods are acceptable exist to either incorporate the granularity of the processbased approach in conjunction with EEIO models, or where top-down approaches for attributable components for which process data cannot be generated

Process based environmental life cycle assessment (LCA)

Yes (3) – RT suite remains safe 10 Are there Are there any other YES trolleys in crash trolleys we the area? Could the Yes can take out of Change to AED outside No Complementary crash bag and use outside use? crash bag utilised? 50 trolleys remain in use Saves £6.07 per trolley Take out -Short expiry date of trolley with the product using

Source: An example of a process map for a LCA. The Christie, Centre for Sustainable Healthcare competition winners, report (2022)

YHEC

alth Economics Consortium

LCA and life cycle costing (LCC) of health technology

Source: Environmental impact and life cycle financial cost of hybrid (reusable/single-use) instruments versus singleuse equivalents in laparoscopic cholecystectomy (Rizan

LCA and life cycle costing LCC of health technology

Damage category	Unit	Laparoscopic clip applier		Laparoscopic scissors		Ports		Total (Normalised results)	
		Hybrid	Single-use	Hybrid	Single-use	Hybrid	Single-use	Hybrid	Single-use
Human health	DALY	1.09e ⁻⁶	6.30e ⁻⁶	1.28e ⁻⁶	2.90e ⁻⁶	1.67e ⁻⁶	6.13e ⁻⁶	$4.04e^{-6}$ (1.7e ⁻⁴)	1.53e ⁻⁵ (6.45e ⁻⁴)
Ecosystems	species.yr	1.96e ⁻⁹	1.24e ⁻⁸	1.84e ⁻⁹	5.22e ⁻⁹	3.67e ⁻⁹	1.36e ⁻⁸	7.47e ⁻⁹ (1.04e ⁻⁵)	3.12e ⁻⁸ (4.36e ⁻⁵)
Resources	US \$	0.0464	0.2944	0.0314	0.1176	0.0853	0.344473	$1.63e^{-1}$ (5.82e^{-6})	7.56e ⁻¹ (2.7e ⁻⁵)

Source: Environmental impact and life cycle financial cost of hybrid (reusable/single-use) instruments versus single-use equivalents in laparoscopic cholecystectomy (Rizan and Bhutta 2021)

Life cycle assessment (LCA) and life cycle costing (LCC) of health technology

Life cycle assessment and life cycle cost of repairing surgical scissors (Rizan et al., 2022)

Life cycle assessment (LCA) and life cycle costing (LCC) of health technology

Single use scissors: 835g CO2e/use, £4.26/use

Reusable scissors: 64g CO2e/use, £1.43/use

Life cycle assessment and life cycle cost of repairing surgical scissors (Rizan et al., 2022)

Summary of approaches to support developing environmental impact methods appropriate for HTA

- Use standards and guidance
- Hybrid methodology
- Transparency and explicit in methods
- Quantitative and qualitative methods
- Primary and secondary data
- Broad environmental outcomes
- Can data be extrapolated?
- Multidisciplinary collaboration
- Care pathway LCA is the goal!
- Life cycle costing (LCC)

Potential next steps

- Is there scope to collaborate with other industry suppliers? Perhaps the same care pathway LCA where both health technologies contribute to sustainable development?
- Utilise the Centre for Sustainable Healthcare (CSH) resources, courses and networks
- Keep abreast of the developments, reports and guidance published amongst healthcare professional bodies and trade unions in healthcare sustainable development
- Look out for any further webinars and educational events from YHEC sign up to receiving information about events
- Contact <u>melissa.pegg@york.ac.uk</u> to enquire about collaboration opportunities with YHEC

Thank you for listening Any questions please?

Mat Taylor, Director Melissa Pegg, Senior Research Consultant

matthew.taylor@york.ac.uk melissa.pegg@york.ac.uk

www.yhec.co.uk

References

- Canadian Agency for Drug and Technology in Health (CADTH) (2023) Reducing the Environmental Impact of Clinical Care. CADTH. Available at: <u>https://www.cadth.ca/reducing-environmental-impact-clinical-care</u> (accessed 14 September 2023)
- Ballester J, Quijal-Zamorano M, Méndez Turrubiates RF, Pegenaute F, Herrmann FR, Robine JM, Basagaña X, Tonne C, Antó JM, Achebak H. Heat-related mortality in Europe during the summer of 2022. Nature medicine. 2023 Jul 10:1-0.
- Bellani et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016;315(8):788–800.
- Brundtland GH. Our common future—Call for action. Environmental conservation. 1987;14(4):291-4.
- Curtis, L. & Burns, A. (2015) Unit Costs of Health and Social Care 2015, Personal Social Services Research Unit (PSSRU), University of Kent, Canterbury
- Department for Business Innovation and Skills. PAS 2050:2012 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. Available from: <u>http://www.bsigroup.com/Standards-and-Publications/How-we-can-helpyou/Professional-Standards-Service/PAS-2050</u> (accessed 10 September 2023)
- Eckelman MJ, Sherman JD, MacNeill AJ. Life cycle environmental emissions and health damages from the Canadian healthcare system: An economic-environmental-epidemiological analysis. PLoS medicine. 2018;15(7):e1002623.
- Environmental Resources Management. Greenhouse gas accounting sector guidance for pharmaceutical products and medical devices. [Internet]. 2012. [cited 2022 May 4]. Available from: <u>https://ghgprotocol.org/sites/default/files/Summary-Document_PharmaceuticalProduct-and-Medical-Device-GHG-Accounting_November-2012_0.pd</u>
- Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O'Reilly S, Brauer M, Caravanos J, Chiles T, Cohen A, Corra L, Cropper M. Pollution and health: a progress update. The Lancet Planetary Health. 2022 Jun 1;6(6):e535-47.

References

- International Organisation for Standardisation. ISO 14067:2018 Greenhouse gases Carbon footprint of products Requirements and guidelines for quantification. Available from: <u>https://www.iso.org/standard/71206.html</u> (accessed 10 September 2023)
- International Organization for Standardization. ISO 14040:2006 Environmental management-life cycle assessmentprinciples and framework. Available at: <u>https://www.iso.org/standard/37456.html</u> (accessed 10 September 2023)
- IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Khangura SD, Seal K, Esfandiari S, Quiñonez C, Mierzwinski-Urban M, Mulla SM, Laplante S, Tsoi B, Godfrey C, Weeks L, Helis E. Composite resin versus amalgam for dental restorations: a health technology assessment
- Kingfisher (2023) Seven regions in England will face severe water stress by 2030 as Brits significantly underestimate their daily water usage. Available at: <u>https://www.kingfisher.com/en/media/news/kingfisher-news/2023/seven-regions-in-england-will-face-severe-water-stress-by-2030-a.html</u> (accessed 14 September 2023)
- Rizan C, Bhutta MF. Environmental impact and life cycle financial cost of hybrid (reusable/single-use) instruments versus single-use equivalents in laparoscopic cholecystectomy. Surgical Endoscopy. 2022 Jun:1-2.
- Rizan C, Brophy T, Lillywhite R, Reed M, Bhutta MF. Life cycle assessment and life cycle cost of repairing surgical scissors. The International Journal of Life Cycle Assessment. 2022 Jun;27(6):780-95.
- National Health Service (NHS) (2022). Delivering a 'Net Zero' National Health Service. July 2022. NHS England 2022

References

- The Earthbound Report (2012) Picture of a tonne of carbon. Available at: <u>https://earthbound.report/2012/12/03/picture-a-tonne-of-carbon/</u> (accessed 14 September 2023)
- The NICE (2021). The NICE Strategy 2021 -2026. Dynamic, Collaborative, Excellent. Available at: https://www.nice.org.uk/Media/Default/Get-involved/Meetings-In-Public/Public-board-meetings/Mar-24-pbm-NICEstrategy-2021-2026.pdf
- The NICE (2023). NICE Listens: Public dialogue on environmental sustainability. Final Report. Available at: <u>https://www.nice.org.uk/about/what-we-do/our-research-work/nice-listens</u> (accessed 13 September 2023)
- Toolan M, Walpole S, Shah K, Kenny J, Jónsson P, Crabb N, et al. Environmental impact assessment in health technology assessment: principles, approaches, and challenges. International Journal of Technology Assessment in Health Care. 2023;39(1):e13.
- World Resources Institute (2011) Greenhouse gas protocol, product life cycle accounting and reporting standard.
 World Resources Institute and WBCSD; 2011. Available at:

https://ghgprotocol.org/sites/default/files/standards/Product-Life-Cycle-Accounting-Reporting-Standard_041613.pdf